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Abstract. A novel approach to analyzing time series generated by complex systems, such as markets, is
presented. The basic idea of the approach is the Law of Self-Similar Evolution, according to which any
complex system develops self-similarly. There always exist some internal laws governing the evolution of a
system, say of a market, so that each of such systems possesses its own character regulating its behaviour.
The problem is how to discover these hidden internal laws defining the system character. This problem can
be solved by employing the self-similar approximation theory, which supplies the mathematical foundation
for the law of self-similar evolution. In this report, the theoretical basis of the new approach to analyzing
time series is formulated, with an accurate explanation of its principal points.
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1 Law of self-similar evolution

There are two sides of the approach I am going to present
here: philosophical and mathematical. The first side gives
the general idea of why should we think in these or those
terms, and the second side is supposed to answer how con-
cretely could we realize the idea. It is natural to start with
the formulation of the general idea.

The idea to be formulated is general since it may con-
cern any complex system, for instance, a market, a firm, a
society, a nation, species, a person, a brain, a heart, and so
on. Shortly speaking, a complex system is such that can-
not, at least at the present time, be completely described
by any finite number of given equations. A complex system
exists as an empirical organism, with its specific character
and behaviour.

To understand the character of a system means to no-
tice some rules governing its behaviour and, therefore, to
be able to predict the latter. If the system is complex,
such rules cannot be described by fixed equations. But
one may always characterize the behaviour in terms of self-
similarity, implying that there exist some specific features
that, to some extent, are repeated during the evolution of
the considered system. Thus, characterizing a person, we
name the corresponding features that give us impression
of what can be expected from him or her.

The evolution of each complex system is always gov-
erned by some laws. This is why there is a similarity in
the behavioural facts of this system. Such a behavioural
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self-similarity is easily noticeable in the life of particular
persons as well as in the history of societies, nations, and
biological species. This observation suggests that there ex-
ists the law of self-similar evolution, according to which
the main features of a complex system are preserved in
the course of its evolution. And if one has grasped these
features, he or she should have the feeling of what could
be expected in future.

When the behavioural facts, related to the evolution of
a complex system, can be associated with some quantities,
one gets time series. These can be market prices or indices,
measurable signals from a brain or from a heart, some
data characterizing societies or species etc. The examples
of time series are numerous, their consideration being usu-
ally based on statistical analysis and the construction of
dynamic regression models [1–5]. These models provide a
rather reasonable description of sufficiently stable dynam-
ics with repeated events, like seasonal variations, but they
fail in treating such unstable systems as markets. Finan-
cial markets are very difficult to predict. Perhaps the most
central question in finance is under what circumstances is
prediction possible at all?

The widespread opinion is that market prices fluctu-
ate absolutely randomly and, thus, are unforecastable.
This point of view is what is called the Efficient Markets
Hypothesis, which can be traced back to Samuelson [6].
According to this hypothesis, in an informationally effi-
cient market, properly anticipated prices fluctuate ran-
domly. This includes the assumption that prices fully in-
corporate the expectations and information of all market
participants, that all market traders are identical in the
sense that all of them possess the same and the whole
information on a market, all traders having the same
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physical and mental abilities. Such a hypothesis that all in-
vestors are fully rational agents that instantaneously and
correctly process all available information is clearly unre-
alistic. Moreover, people, thank God, are never identical
neither in their abilities nor in their wishes. They are not
elementary quantum particles, but each of them is a very
complex system by its own. There is also increasing em-
pirical evidence that even the most competitive markets
are not strictly efficient [7–9].

A word of caution is called for with respect to the
meaning of the term “random”, which is often confused
with “chaotic”. These two notions are rather different. A
realistic process can be chaotic, at the same time, pos-
sessing properties of both regularity and randomness in
different proportions, so that it is, in principle, possible to
distinguish chaos from randomness, and even control or
erase chaos and make predictions [10,11].

Dynamics of all realistic complex systems always ex-
hibit some part of randomness, either due to internal rea-
sons, specific for nonlinear dynamical systems, or caused
by external stochastic noise. Therefore randomness is in-
avoidable to this or that extent and, for some time inter-
vals, it can mask the existence of underlying tendencies
and persisting trends. Nevertheless, such trends are to be
noticeable on average, whether this concerns the evolu-
tion of financial markets or biological species. Persisting
features retained during this evolution imply that the com-
plex system evolves self-similarly. It is worth emphasizing
that the law of self-similar evolution does not mean and
in no sense requires that there should be displayed some
rigidly fixed properties of the considered system, but it
rather tells that there must exist some trends in evolu-
tion. The evolutional self-similarity is not a static notion
requiring the occurrence of stationary fixed properties but
it is a dynamic concept stating the persistence of underly-
ing trends.

In this section, the law of self-similar evolution has
been described as a philosophical category, in rather gen-
eral and perhaps vague words. The corresponding mathe-
matical realization will be presented in the following sec-
tions. The suggested approach is mathematically based on
the self-similar approximation theory whose application to
the analysis of asymptotic series is expounded in Section 2.
The self-similar extrapolation of asymptotic series can be
directly reformulated as a self-similar forecasting for time
series, which is explained in Section 3. A method for evalu-
ating the probabilities of self-similar patterns is developed
in Section 4. These sections present, for the first time, the
complete mathematical foundation of the self-similar ap-
proach to analyzing arbitrary time series. Specifications
related to market time series are also discussed. Principal
points of the approach are summarized in Section 5.

2 Self-similarity in asymptotic series

Assume that we are interested in finding a function f(x)
of a real variable x. Let this function be defined by so
complicated equations that we are able to extract from
them only asymptotic expansions in the vicinity of some

point x0. Without the loss of generality, the expansion
point may be taken as zero, x0 = 0. Let us have several
such expansions,

f(x) ' fk(x) (x→ 0) , (1)

enumerated by the index k = 0, 1, 2, . . . The basic problem
is what can be said about the value of f(x) at finite x if all
we know are asymptotic expansions fk(x) in the vicinity
of x → 0? This problem is constantly met in physics and
applied mathematics, where it is often called the problem
of function reconstruction or the problem of summation
of asymptotic series [12].

An original general approach, named the self-similar
approximation theory, for reconstructing functions from a
set of their approximate expressions has been developed
and successfully applied to various problems [13–23]. The
name comes from the basic idea of the approach to present
the passage between subsequent approximations as a
self-similar transformation. More precisely, it was shown
[15–19] that for an approximation sequence {fk(x)} it is
possible to construct a cascade, that is a dynamical system
with discrete time, whose trajectory is bijective to the se-
quence {fk}, so that the sought function f(x) corresponds
to a fixed point of the cascade. If we treat the given compli-
cated equations, together with a calculational algorithm,
as a complex system generating a sequence {fk}, then the
latter is nothing but a prototype of a time series, the ap-
proximation number k playing the role of time. Hence the
self-similar approximation theory is the mathematical re-
alization of the law of self-similar evolution.

Asymptotic expansions are usually presented as power-
law series

fk(x) =
k∑
n=0

an x
αn , (2)

where αn are arbitrary real numbers arranged in ascending
order,

αn < αn+1 (n = 0, 1, . . . , k) . (3)

For the purpose of self-similar analysis, the presentation
of the series (2) has to satisfy several general properties:

(i) Analysis should not depend on the choice of units
for the variable. Hence the latter is to be taken in a di-
mensionless form.

(ii) Asymptotic expansions are to be reduced to a scale-
invariant form. To this end, it is always possible to factor
out the term

f0(x) = a0 x
α0 (a0 6= 0) (4)

and to introduce the scale-invariant function

ϕk(x) ≡ fk(x)
f0(x)

, (5)

where x is assumed to be dimensionless. Evidently, func-
tion (5) does not depend on the change of scales for fk.
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(iii) If the variable x pertains to a finite interval, the
latter is to be normalized to the unitary interval. So that
everywhere in what follows, it is assumed that x ∈ [0, 1].

Note that if the variable pertains to an infinite interval,
one may pursue different ways depending on what addi-
tional information on the behaviour of f(x) at x → ∞ is
available. If there is no such information, it is possible to
transform the infinite interval to the unitary one by means
of the change of variables x′ = x/(1 +x), x = x′/(1−x′),
so that x′ ∈ [0, 1].

For the scale-invariant function (5), we have

ϕk(x) =
k∑
n=0

bn x
βn , (6)

where x ∈ [0, 1] and

bn ≡
an
a0

, βn ≡ αn − α0 ≥ β0 = 0 . (7)

Clearly, ϕ0(x) = 1. Also, all powers βn are positive, even
if some αn are negative, which follows from the ascending
order (3). Recall that, by construction, the series (6) are
assumed to be asymptotic, having sense only for x → 0,
while for any finite x sequence {ϕk(x)}∞k=0 diverges. It is
possible to say that the latter sequence converges just at
one point x = 0.

To proceed further, we have to transform divergent se-
ries to a form that would have sense for finite x ∈ [0, 1).
This can be done with the help of control functions [13],
which can be introduced in different ways [13–23]. Dealing
with asymptotic series, it is convenient to invoke the mul-
tiplicative power-law transformation [20–22] defined as

Φk(x, s) ≡ xs ϕk(x) , (8)

with the inverse transformation

ϕk(x) = x−s Φk(x, s) . (9)

Since power laws are common in describing fractal objects,
equation (8) may be called the fractal transformation. The
transform (8), according to equation (6), is

Φk(x, s) =
k∑
n=0

bn x
s+βn . (10)

Here s = s(x) is a control function, whose role is to make
the series (10) meaningful for finite x. These series can be
considered as an expansion in powers of the new variable
xs. As is evident, such series are asymptotic with respect
to xs → 0. The latter limit can be achieved if, instead of
forcing x to zero, we keep |x| < 1 and setting s → ∞.
Thus, the series (10) can be treated as asymptotic with
respect to s→∞ for all |x| < 1. Now we may say that the
sequence {Φk(x, s)}∞k=0 converges for all |x| < 1, provided
that s→∞. In this way, we come to the natural choice of
the control function s→∞. Recall that we are consider-
ing the case when no additional constraints are imposed
on the behaviour of the sought function and all we know

are its asymptotic expansions (1). In the intermediate ex-
pressions, the value of s is assumed to be asymptotically
large, and the actual limit s→∞ is to be taken after the
inverse transformation (9).

Since our consideration here concerns functions, we
need to define the property of functional self-similarity,
which should not be confused with geometric self-
similarity describing fractals. The notion of geometric self-
similarity [24] is connected with the scaling of a variable,
which is only a particular kind of the more general no-
tion of the functional or group self-similarity [15–19]. To
correctly define the latter, we need to introduce some no-
tation. We define the expansion function x(ϕ, s) by the
equation

Φ0(x, s) = ϕ , x = x(ϕ, s) . (11)

With the form (10), this gives x(ϕ, s) = ϕ1/s and ϕ = xs.
Introduce the mapping

yk(ϕ, s) ≡ Φk(x(ϕ, s), s) . (12)

Let Φk(x, s) be real for all k = 0, 1, 2, . . . and all x ∈ [0, 1].
From Φk(x, s) ∈ R it follows that yk(ϕ, s) ∈ R for all
k = 0, 1, 2, . . . and ϕ ∈ R. Therefore the mapping (12)
is an endomorphism on R. It is this endomorphism that
allows us to formulate the property of group self-similarity
we need.

Our aim is to present the change of the endomorphism
(12), when varying the approximation number k, as the
evolution of yk with respect to the discrete time k. From
the point of view of group theory, self-similarity is nothing
but a semigroup property. The latter, for the evolution of
yk with respect to k, reads yk+p = yk yp. As follows from
the definition (11), the unit element is y0, since y0(ϕ, s) =
ϕ. The family of endomorphisms, {yk| k = 0, 1, 2, . . .},
with the semigroup property forms a dynamical system in
discrete time, called the cascade. The semigroup property,
in terms of the notation (12), takes the form

yk+p(ϕ, s) = yk(yp(ϕ, s), s) . (13)

Since in the accepted interpretation, we treat the sequence
{yk(ϕ, s)} as a trajectory resulting from the evolution of
the cascade {yk| k = 0, 1, 2, . . .}, the relation (13) may
be called the evolutional self-similarity. As far as the cor-
responding semigroup property is natural for dynamical
systems, equation (13) may also be termed dynamic self-
similarity. This equation (13) is a necessary condition for
the fastest-convergence criterion [16,17]; the cascade fixed
point representing the sought function.

Following the general theory [14–19], the cascade
{yk| k = 0, 1, 2, . . .} can be embedded into a flow {yτ | τ ≥
0}, which is a dynamical system in continuous time. For
the latter, one may write the Lie equation which is a dif-
ferential equation of motion. The flow velocity field is de-
fined, by means of the Euler discretization, as the cascade
velocity

vn(ϕ, s) ≡ yn(ϕ, s) − yn−1(ϕ, s) (n = 1, 2, . . . , k) .
(14)
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From equations (10–12), it follows that

yk(ϕ, s) =
k∑

n=0

bn ϕ
1+βn/s , (15)

which results in

vn(ϕ, s) = bn ϕ
1+βn/s . (16)

The differential equation of motion can be integrated. The
integration over the effective time goes from τ = n to
τ = n + τn, with τn being the effective time required for
reaching a fixed point after the n-th step. In this way,∫ n+τn

n

dt = τn . (17)

Therefore, the evolution integral [15–19] acquires the form∫ y∗n

yn−1

dϕ
vn(ϕ, s)

= τn . (18)

This, with the cascade velocity (16), yields

Φ∗n =
(
Φ
−βn/s
n−1 − βn

s
bnτn

)−s/βn
,

where Φ∗n = Φ∗n(x, s) ≡ y∗n(xs, s) and Φn = Φn(x, s). In
particular,

Φ∗1(x, s) = xs
(

1− β1

s
b1τ1 x

β1

)−s/β1

.

Returning back to the function ϕ∗k(x) by means of the
inverse transformation (9), we have to take the limit s→
∞. For example,

ϕ∗1(x) ≡ lim
s→∞

x−s Φ∗1(x, s) ,

which results in the first-order self-similar approximation

ϕ∗1(x) = exp
(
b1τ1 x

β1
)
.

To obtain higher approximations, we can accomplish such
a renormalization procedure 2k times for each Φ∗k(x, s),
which was called [21,22] self-similar bootstrap. However
the same result can be reached twice faster by accom-
plishing k renormalizations, in the following way. We may
present the function (6) as

ϕk(x) =

1 + b1 x
β1

(
1 +

b2
b1
xβ2−β1

(
1 +

b3
b2
xβ3−β2(1 + ...)

)
...

)
.

The latter can be written in the form ϕk(x) = 1 + x1, in
which x1 is expressed through x2, and x2 through x3, and
so on according to the rule

xn =
bn
bn−1

xβn−βn−1 (1 + xn+1) ,

where n = 1, 2, . . . , k. Considering each xn as a small
parameter, we need to accomplish k times the first-order
renormalization procedure described above. As a result,
introducing the notation

cn ≡
an
an−1

τn , νn ≡ αn − αn−1 (n = 1, 2, . . . , k) ,

(19)

we come to the k-order self-similar exponential approxi-
mation

ϕ∗k(x) = exp (c1xν1 exp (c2xν2 . . . exp (ckxνk)) . . . ) .
(20)

This, for short, can also be named the k-order superexpo-
nential.

It is worth emphasizing that although the form (20)
reminds us of the Euler nested exponentials [25,26], it
is principally different from the latter. Firstly, the Euler
superexponentials are defined only for integer powers αn.
Secondly, when one tries to sum power series by means of
such continued exponentials, one fits the coefficients in the
latter in order to reproduce those in the power series; as
a result the constructed superexponentials have the same
radius of convergence as the related power series on the
real axis [27,28].

In our case, the self-similar exponential (20) contains
the coefficients cn given by equation (19), where the effec-
tive renormalization time τn is yet undefined. The latter
plays the role of a control function that is to be determined
from additional conditions. One method could be to find
τn from the fixed-point conditions [22] having the form of
the minimal-difference criterion [13]. However, such fixed-
point equations do not always possess solutions. Here we
suggest another, and more general way of defining the con-
trol functions τn. This method is commonly employed for
defining control functions in the optimal control theory.
The idea is to construct a cost functional whose mini-
mization yields the control functions of interest.

The quantity τn appears in the evolution integral (18),
where it has the meaning of an effective time required for
reaching, after the n-th step, a fixed point representing
the sought function. One would clearly like to reach the
answer as fast as possible. The minimal number of renor-
malization steps is obviously one. Therefore one would
like that the total effective time nτn be also close to one.
Hence, one should look for τn being close to 1/n. At the
same time, how fast one reaches the fixed point depends
on the distance of the latter from the starting point. The
distance that is passed during the time τn, with a veloc-
ity vn, can be evaluated as vnτn. Thus, we need to find a
minimal time τn, being close to 1/n, corresponding to the
minimal distance vnτn. This suggests us to construct the
time-distance cost functional

F =
1
2

∑
n

[(
τn −

1
n

)2

+ (vnτn)2

]
, (21)
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whose minimization with respect to the control function
τn yields

τn =
1

n(1 + v2
n)
· (22)

The velocity vn = vn(x) is to be understood as the image,
in the domain of x, of the cascade velocity (16), while
taking account of the inverse transformation (9), which
gives vn(x) ≡ x−svn(xs, s). From here, one has

vn(x) = ϕn(x)− ϕn−1(x) = bn x
βn , (23)

which defines the control function τn = τn(x) according
to the expression (22).

In this way, we find the controllers

cn(x) =
an
an−1

τn(x) , νn = αn − αn−1 ,

τn(x) =
1

n[1 + v2
n(x)]

, vn(x) =
an
a0

xαn−α0 . (24)

Combining equations (5) and (20), we obtain the k-order
self-similar exponential approximation

f∗k (x) = f0(x) exp (c1xν1 exp (c2xν2 . . . exp (ckxνk)) . . . ) ,
(25)

in which cn = cn(x), and f0(x) is given by formula (4).
The approximant (25) extrapolates the asymptotic series
(2), valid only for x→ 0, to the region of finite x ∈ [0, 1).
The value of f(x) at the point x = 1 can be defined as the
limit from the left, as x → 1− 0. Therefore the superex-
ponential (25) extrapolates the sought function f(x) from
asymptotically small x→ 0 to the whole unitary interval
0 ≤ x ≤ 1.

It is worth recalling that in the asymptotic series (2)
the powers αn were assumed to be arbitrary real num-
bers, with the sole requirement that they are arranged
in ascending order (3). Some, or even all, of these pow-
ers could be negative. If so, the initial term (4), with
α0 < 0, has the power-law form that has been so much
discussed in literature. The asymptotic existence of power
laws is well known in critical phenomena. The relevance of
power laws has repeatedly been claimed to describe many
natural phenomena, ranging from earthquakes [24,29,30]
to different economic and financial distributions [31,32].
Since such power laws are practically always asymptotic,
their more general form should include corrections leading
to the power-law series (2). Extrapolating these asymp-
totic series in the described self-similar way, one should
come to the self-similar exponentials. The first-order ap-
proximation then results in a kind of a stretched expo-
nential. The stretched exponential distributions describe
many phenomena in nature and economy either not worse
or even better than power-law distribution functions [33].
More generally, the extrapolation of power laws should
lead to the self-similar nested exponentials (25), whose
structure evidently demonstrates the existence of many
scales.

3 Self-similarity in time series

The technique of self-similar extrapolation for asymptotic
series can be reformulated as the method of forecasting for
time series. It is necessary to call attention to the existence
of several principal points in this reformulation. Overlook-
ing these points would essentially restrict the applicability
of the method. The correct general way of self-similar fore-
casting for time series is listed below.

First of all, the same basic requirements that were im-
posed on asymptotic series are compulsory for time series:

(i) The measured quantity is to be presented in a scale-
invariant form. This can be easily done by normalizing the
given data to the value f0 of the measured quantity at the
initial time, which is analogous to introducing the scale-
invariant function (5).

(ii) The time variable has to be normalized to a dimen-
sionless form, such that the prediction time would pertain
to the unitary interval [0, 1]. This normalization elimi-
nates the ambiguity in defining the power of the power-law
transformation (8), requiring that s→ 0, which results in
self-similar superexponentials (20).

In addition to these requirements, common both for
asymptotic as well as for time series, there arises a ques-
tion that specific for time series: how should the latter
be presented, as a backward or forward recursion? The
answer to this question follows from the comparison of
asymptotic series with time series. In order that the ex-
trapolation of asymptotic series could be directly extended
to forecasting for time series, the prediction horizon is to
be a unitary interval and the available information from
the past has to provide approximate forecasts for asymp-
totically small time t → +0. This requirement can be
strictly accomplished only for backward recursion. Hence,
we have one more restriction, specific for time series:

(iii) For the correct usage of the self-similar analysis,
time series are to be arranged as a backward recursion.
This means that, if we are given a set {fn} of data fn
corresponding to a quantity of interest, measured at the
times tn, where n = 0, 1, 2, . . . , k, the moments of time
are to be ordered so that

tn+1 < tn (n = 0, 1, 2, . . . , k) , (26)

with the initial time t0 = 0. The past-history data base of
k-th order is the set

Dk = {fk, fk−1, . . . , f0| tk < tk−1 < . . . < 0} . (27)

To start the procedure of self-similar forecasting for
future times t ∈ [0, 1], we need to possess a sequence of
approximations valid for asymptotically small t → +0.
The role of such asymptotic forecasts can naturally be
played by functions fk(t) interpolating the given data
base (27) for the past time horizon tk ≤ t ≤ 0, so that

fk(tn) = fn (n = 0, 1, . . . , k) . (28)
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This interpolation can be uniquely defined by the
Lagrange interpolation formula [34] presenting the inter-
polation function

fk(t) =
k∑

n=0

fn l
k
n(t) (k ≥ 1) (29)

as a series over the Lagrange polynomials

lkn(t) ≡
k∏

m(6=n)

t− tm
tn − tm

(n ≤ k) . (30)

Because of the property lkn(tm) = δmn of the Lagrange
polynomials, condition (28) is automatically satisfied.
Note that the interpolation form (29) is evidently scale in-
variant with respect to time and the ratio fk(t)/f0 is scale
invariant with respect to units of fk. Also, one may remark
that the time moments tn are not necessarily equidistant,
but can be chosen arbitrarily.

The interpolation formula (29) can be rewritten as the
algebraic polynomial

fk(t) =
k∑
n=0

an t
n (a0 = f0) , (31)

with the coefficients an ≡ ank immediately following from
equations (29) and (30). The values of these coefficients
depend, of course, on the given data base (27), but for the
simplicity of notation, we shall omit in what follows the
additional index k. Consider the subsequence {fn(t)}kn=0
of the terms

fn(t) ≡
n∑

m=0

am tm , (32)

which, for a given k, tends to the polynomial (31) as n→ k
and for which

fn(0) = a0 = f0 (n = 0, 1, . . . , k) . (33)

Then the subsequence {fn(t)}kn=0 can be treated as a se-
quence of approximations asymptotically valid for t→ +0.
Employing the self-similar extrapolation, described in the
previous section, we may construct a forecast for the time
interval 0 ≤ t ≤ 1. The result is given by formulae (24)
and (25), where we need to change the variable x by the
time t and to put αn = n, νn = 1. Instead of equations
(24), we have the controllers

cn(t) =
an
an−1

τn(t) (n = 1, 2, . . . , k)

τn =
1

n[1 + v2
n(t)]

, vn(t) =
an
f0

tn . (34)

And the self-similar exponential (25) takes the form

f∗k (t) = f0 exp (c1t exp (c2t . . . exp (ckt)) . . . ) , (35)

in which cn = cn(t). Expression (35) is the self-similar
forecast for the future time interval 0 ≤ t ≤ 1, predicted
on the grounds of the past-history data base (27).

4 Ensemble of possible scenarios

For each given data base (27), one may construct the self-
similar forecast (35). But one can take several different
data bases by varying either the data-base order k, or by
changing the time intervals between the moments of time
tn, where n = 0, 1, . . . , k, or by varying both the data-base
order as well as the data-base scale. So that, in general,
one can consider an ensemble of different data bases. Each
of the latter has to be labelled by two indices,

Dk(j) =
{
f

(j)
k , f

(j)
k−1, . . . , f0| t(j)k < t

(j)
k−1 < . . . < 0

}
,

(36)

one index, k, defining the data base order, and another,
j, specifying the chosen time scale of the past. For each
data base (36), one obtains a forecast f∗k (j, t) according to
the rule (35), but with different values of cn = cnk. Hence
there exists an ensemble {f∗k (j, t)} of possible forecasts,
or admissible scenarios. Which of these possible forecasts
should one trust?

Life teaches us that in the majority of cases nothing
can be trusted a hundred percent. But, when there can
happen to be several different events, they can be classi-
fied by estimating their probabilities. Hence we need to
define a probability measure on the ensemble of scenarios
{f∗k (j, t)}.

This problem is analogous to the problem of pat-
tern selection occurring for nonlinear differential equa-
tions in partial derivatives. Such equations sometimes
possess a set of solutions corresponding to different spatio-
temporal structures, or patterns [35]. A general approach
for treating the problem of pattern selection has been
suggested [36]. This approach can be directly applied for
weighting possible scenarios from the given ensemble of
self-similar forecasts. For this purpose, we may consider
the passage from f∗k (j, t) to f∗k+1(j, t) as the motion with
respect to k. Then the map {f∗k (j, t)| k = 1, 2 . . .} can
be treated as the image of a dynamical system with dis-
crete time k. The probability of a scenario f∗k (j, t) can be
defined as

pk(j, t) =
1

Zk(t)
exp {−∆Sk(j, t)} , (37)

where Zk(t) is a normalization factor, being the sum

Zk(t) ≡
∑
j

exp {−∆Sk(j, t)}

over the pattern indices j, and the entropy variation

∆Sk(j, t) ≡ Sk(j, t)− S1(j, t) (38)

shows the change of entropy with respect to the effec-
tive time k. The entropy of a dynamical system may be
defined, by analogy with statistical systems, as the loga-
rithm of an elementary phase volume [36], the latter, in
our case, being |δf∗k (j, t)|. Thus the dynamical entropy is

Sk(j, t) ≡ ln |δf∗k (j, t)| . (39)
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Then the entropy variation (38) becomes

∆Sk(j, t) = ln
∣∣∣∣δf∗k (j, t)
δf∗1 (j, t)

∣∣∣∣ . (40)

With the notation for the mapping multiplier

mk(j, t) ≡ δf∗k (j, t)
δf∗1 (j, t)

=
∂f∗k (j, t)/∂t
∂f∗1 (j, t)/∂t

, (41)

the entropy variation (40) reduces to

∆Sk(j, t) = ln |mk(j, t)| . (42)

It is convenient to introduce the average multiplier mk(t)
by the relation

1
|mk(t)| ≡

∑
j

1
|mk(j, t)| · (43)

Using equations (42) and (43), for the scenario probability
(37), we have

pk(j, t) =
∣∣∣∣ mk(t)
mk(j, t)

∣∣∣∣ . (44)

Note that the scenario probability (44) is normalized
with respect to the summation over the pattern indices j
corresponding to different data-base scales. In a particular
case of just one fixed scale, one could accomplish the nor-
malization with respect to the summation over k, which
would define the probability weights for a restricted data-
base ensemble, as was postulated in reference [37]. The
derived scenario probability (44) concerns the general case
of an arbitrary ensemble {Dk(j)} of the data bases (36).
Being general, the approach of the present paper makes it
possible to answer several principal questions.

One important question concerns the choice of the
data-base order. More in detail, the problem is as follows.
For a fixed time scale, labelled by j, we may analyze differ-
ent data bases Dk(j), with varying k = 1, 2, 3, . . . . Then,
how many terms f (j)

k should we take? That is, when should
we stop increasing k? The answer is straightforward. The
data-base order k has to be increased till we reach numer-
ical convergence. More precisely, this means the following.
Let us be satisfied by the results of an error ε. Then we
need to increase k up to the saturation number Nj = Nj(ε)
such that

|f∗k+n(j, t)− f∗k (j, t)| < ε (45)

for k ≥ Nj, all n ≥ 0, and t ∈ [0, 1]. For this k = Nj ,
we have the saturated data base D(j) ≡ DNj (j) and the
related saturated forecast

f∗(j, t) ≡ f∗Nj(j, t) (46)

characterized by the saturated scenario probability

p(j, t) ≡ pNj (j, t) . (47)

Thus, varying the data-base scales, labelled by j, we get
the saturated ensemble {f∗(j, t)} of scenarios (46), with
the probability measure (47).

The most probable scenario from the ensemble
{f∗(j, t)} is the forecast f∗(j0, t) having the largest prob-
ability, such that

max
j
p(j, t) = p(j0, t) . (48)

The latter, because of the form (44), is equivalent to the
condition of the minimum for the absolute value of the
multiplier m(j, t) ≡ mNj(j, t), so that

min
j
|m(j, t)| = |m(j0, t)| . (49)

Having the probability measure (47), it is possible to de-
fine the average forecast, or the expected forecast

〈f(t)〉 =
∑
j

p(j, t) f∗(j, t) . (50)

The dispersion

σ2(t) ≡ 〈f2(t)〉 − 〈f(t)〉2 ,

in the case of a market, describes the market volatility.
The latter can also be characterized by the variance coef-
ficient κ(t) ≡ σ(t)/〈f(t)〉.

The last question to be answered in order to have
a completely self-consistent theory is how to choose the
data-base time scale. In general, the moments of time t(j)n
should not be compulsory equidistant. However, for prac-
tical purpose, it looks more convenient to take them as
such, defining the time step as ∆j ≡ t(j)n − t(j)n+1. It seems
natural to start with the time scale ∆0 = 1, which equals
the prediction horizon. Then, one may decrease as well
as increase the time step, for instance, according to the
rule ∆2j = 2−j, ∆2j+1 = 2j , with j = 0, 1, 2, . . . One
has to stop decreasing and increasing the data-base time
scale at such j = jmax, when numerical convergence is
reached. This implies that, for a given error ε, one gets
the inequality

|f∗(j +m, t)− f∗(j, t)| < ε

for j ≥ jmax, all m ≥ 0, and t ∈ [0, 1].

5 Summary of main ideas

In this paper, a novel approach to analyzing time series
has been presented. There are several principal points dis-
tinguishing this approach from the standard one. The aim
of this paper has been to clearly describe these principal
points forming the body of a self-consistent theory. Not
yet all parts of this theory have been exploited in full for
practical applications; the calculational work is in pro-
cess. But some simplified versions of the approach have
been illustrated by a number of examples for market time
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series [37,38]. In this concluding section, I would like to
emphasize again the main ideas the approach is based on.

To better stress the principal difference of the present
approach from the standard way of analyzing time series,
let us recall the basic idea of the latter: For a given set of
data {fn| n = 0, 1, 2, . . . , k} one tries to invent a relation
ft = f(f0, f1, . . . , fk, t, ξ) connecting the value ft at the
moment of time t with the past data. This relation can
be in the form of an explicit function or in the form of a
difference or differential equation, including a stochastic
term ξ modelling noise [1–5]. There are, to my mind, two
principal deficiencies of such an approach. First, I think
that no explicit equations, no matter how elaborated they
are, can grasp all peculiarities of a realistic complex sys-
tem, such as a market. Second, any given relations reflect
only the past history, providing an interpolation for the
learning historical period, while for predicting future one
needs an extrapolation.

The self-similar approach is based not on attempts
to invent a relation between the historical points but it
tries to discover dynamic trends resulting in these points.
For this purpose, instead of studying relations between
points, it is necessary to analyze relations between se-
quences. Interpolative formulae are used here only as a
starting step. The comparison of different interpolative
expressions makes it possible to produce an extrapolation
that is forecasting.

The basic philosophical idea of the self-similar analysis
of complex systems is the law of self-similar evolution, for-
mulated in Section 1. And the mathematical foundation
is provided by the self-similar extrapolation of asymptotic
series, described in Section 2. This extrapolation can be
reformulated as forecasting for time series, as is done in
Section 3. Since any forecasting can only be probabilistic,
the way of defining the related probability measure is ex-
plained in Section 4. Some details of the self-similar anal-
ysis can be changed. For example, the number of points
in a given data base can be reduced by replacing several
neighbouring values fn by either arithmetic averages or by
fitting the values on a large time interval with the help of
simple splines [34]. However, in the process of these kinds
of averaging, some information on the considered time se-
ries will be inavoidably lost.

Another change could concern the definition of the ef-
fective control time τn. The latter is to be defined from
the minimization of a cost functional. As an example, the
time-distance cost functional (21) was considered. But, in
general, one could opt for another cost functional, depend-
ing on the available information and imposed constraints.

Also, it would be possible to deal not with the initially
given data base but with some transforms of it. For in-
stance, one could consider the set {ln fn} instead of {fn}.
Or one could keep in mind a more elaborated transform,
like the wavelet transforms, often employed for analyzing
time series [39].

It is worth stressing once more that the notion of self-
similarity, exploited throughout the paper, is understood
here as the group self-similarity, which is a more general
notion than the trivial geometric self-similarity one usu-

ally talks about in connection with fractals. In the lat-
ter case one assumes the existence of the scaling relation
f(λx) = λαf(x) for the considered function f(x). Such
a relation, with a given boundary, or initial, condition
f(x0) = f0, immediately results in the power-law func-
tion f(x) = f0(x/x0)α. One could consider a slightly more
complicated scaling relation as f(λx) = u(λ)f(x), with
a known function u(λ). However again, with the given
boundary condition, this immediately gives the answer
f(x) = f0/u(x0/x). All such scaling relations produce the
considered function in an explicit form. Whereas the group
self-similarity (13) provides an equation that is yet to be
solved.

An important point is that the group self-similarity
employed here, and which is the basis of the self-similar
approximation theory [13–23], has to do not with a scal-
ing of a variable but with the motion with respect to the
effective time whose role is played by the approximation
number. Here it is the motion on the manifold of approx-
imants.

Finally, if we may digress from mathematical founda-
tions, in order to conclude why group self-similarity does
work for extrapolating asymptotic series and forecasting
time series, we should return back to the law of self-
similar evolution; this tells us that all complex systems
develop self-similarly, preserving their generic features in
the course of their evolution. Such features may be not
noticeable at first and hidden in their genes. The group
self-similarity is a kind of genetic self-similarity. Remem-
ber also that the Lord created the man in a self-similar
way [40].

I am grateful to M. Ausloos and E. Yukalova for the interest
to my work and useful discussions.
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